Python
Logs
- Logz.io Python Handler
- OpenTelemetry
The Logz.io Python Handler sends logs in bulk over HTTPS to Logz.io, grouping them based on size. If the main thread quits, the handler attempts to send any remaining logs before exiting. If unsuccessful, the logs are saved to the local file system for later retrieval.
Setup Logz.io Python Handler
Supported versions: Python 3.5 or newer.
Install dependency
Navigate to your project's folder and run:
pip install logzio-python-handler
For Trace context, install the OpenTelemetry logging instrumentation dependency by running:
pip install logzio-python-handler[opentelemetry-logging]
Configure Python Handler for a standard project
Replace placeholders with your details. You must configure these parameters by this exact order. i.e. you cannot set Debug to true, without configuring all of the previous parameters as well.
Parameter | Description | Required/Default |
---|---|---|
<< LOG-SHIPPING-TOKEN >> | Your Logz.io account log shipping token. | Required |
<< LOG-TYPE >> | Log type, for searching in logz.io. | python |
<<TIMEOUT>> | Time to sleep between draining attempts | 3 |
<< LISTENER-HOST >> | Logz.io listener host, as described here. | https://listener.logz.io:8071 |
<<DEBUG-FLAG>> | Debug flag. If set to True, will print debug messages to stdout. | false |
<<BACKUP-LOGS>> | If set to False, disables the local backup of logs in case of failure. | true |
<<NETWORK-TIMEOUT>> | Network timeout, in seconds, int or float, for sending the logs to logz.io. | 10 |
<<RETRY-LIMIT>> | Retries number | 4 |
<<RETRY-TIMEOUT>> | Retry timeout (retry_timeout) in seconds | 2 |
[handlers]
keys=LogzioHandler
[handler_LogzioHandler]
class=logzio.handler.LogzioHandler
formatter=logzioFormat
args=('<<LOG-SHIPPING-TOKEN>>', '<<LOG-TYPE>>', <<TIMEOUT>>, 'https://<<LISTENER-HOST>>:8071', <<DEBUG-FLAG>>,<<NETWORKING-TIMEOUT>>,<<RETRY-LIMIT>>,<<RETRY-TIMEOUT>>)
[formatters]
keys=logzioFormat
[loggers]
keys=root
[logger_root]
handlers=LogzioHandler
level=INFO
[formatter_logzioFormat]
format={"additional_field": "value"}
Dictionary configuration:
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'logzioFormat': {
'format': '{"additional_field": "value"}',
'validate': False
}
},
'handlers': {
'logzio': {
'class': 'logzio.handler.LogzioHandler',
'level': 'INFO',
'formatter': 'logzioFormat',
'token': '<<LOG-SHIPPING-TOKEN>>',
'logzio_type': '<<LOG-TYPE>>',
'logs_drain_timeout': 5,
'url': 'https://<<LISTENER-HOST>>:8071'
'retries_no': 4,
'retry_timeout': 2,
}
},
'loggers': {
'': {
'level': 'DEBUG',
'handlers': ['logzio'],
'propagate': True
}
}
}
Django configuration
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'verbose': {
'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'
},
'logzioFormat': {
'format': '{"additional_field": "value"}',
'validate': False
}
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'level': 'DEBUG',
'formatter': 'verbose'
},
'logzio': {
'class': 'logzio.handler.LogzioHandler',
'level': 'INFO',
'formatter': 'logzioFormat',
'token': '<<LOG-SHIPPING-TOKEN>>',
'logzio_type': "django",
'logs_drain_timeout': 5,
'url': 'https://<<LISTENER-HOST>>:8071'
'debug': True,
'network_timeout': 10,
},
},
'loggers': {
'django': {
'handlers': ['console', ],
'level': os.getenv('DJANGO_LOG_LEVEL', 'INFO')
},
'': {
'handlers': ['console', 'logzio'],
'level': 'INFO'
}
}
}
Serverless platforms
When using a serverless function, import and add LogzioFlusher annotation before your sender function. In the code example below umcomment import
and the @LogzioFlusher(logger)
annotation line. Next, ensure the Logz.io handler is added to the root logger.
Be sure to replace superAwesomeLogzioLoggers
with the name of your logger.
'loggers': {
'superAwesomeLogzioLogger': {
'level': 'DEBUG',
'handlers': ['logzio'],
'propagate': True
}
}
For example:
import logging
import logging.config
# from logzio.flusher import LogzioFlusher
# from logzio.handler import ExtraFieldsLogFilter
# Say I have saved my configuration as a dictionary in a variable named 'LOGGING' - see 'Dict Config' sample section
logging.config.dictConfig(LOGGING)
logger = logging.getLogger('superAwesomeLogzioLogger')
# @LogzioFlusher(logger)
def my_func():
logger.info('Test log')
logger.warning('Warning')
try:
1/0
except:
logger.exception("Supporting exceptions too!")
Dynamic extra fields
You can dynamically add extra fields to your logs without predefining them in the configuration. This allows each log to have unique extra fields.
logger.info("Test log")
extra_fields = {"foo":"bar","counter":1}
logger.addFilter(ExtraFieldsLogFilter(extra_fields))
logger.warning("Warning test log")
error_fields = {"err_msg":"Failed to run due to exception.","status_code":500}
logger.addFilter(ExtraFieldsLogFilter(error_fields))
logger.error("Error test log")
# If you'd like to remove filters from future logs using the logger.removeFilter option:
logger.removeFilter(ExtraFieldsLogFilter(error_fields))
logger.debug("Debug test log")
To add dynamic metadata to a specific log rather than to the logger, use the "extra" parameter. All key-value pairs in the dictionary passed to "extra" will appear as new fields in Logz.io. Note that you cannot override default fields set by the Python logger (e.g., lineno, thread).
For example:
logger.info('Warning', extra={'extra_key':'extra_value'})
Trace context
You can correlate your logs with the trace context by installing the OpenTelemetry logging instrumentation dependency:
pip install logzio-python-handler[opentelemetry-logging]
Enable this feature by setting add_context
parameter to True
in your handler configuration:
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'logzioFormat': {
'format': '{"additional_field": "value"}',
'validate': False
}
},
'handlers': {
'logzio': {
'class': 'logzio.handler.LogzioHandler',
'level': 'INFO',
'formatter': 'logzioFormat',
'token': '<<LOG-SHIPPING-TOKEN>>',
'logzio_type': '<<LOG-TYPE>>',
'logs_drain_timeout': 5,
'url': 'https://<<LISTENER-HOST>>:8071'
'retries_no': 4,
'retry_timeout': 2,
'add_context': True
}
},
'loggers': {
'': {
'level': 'DEBUG',
'handlers': ['logzio'],
'propagate': True
}
}
}
Truncating logs
To create a Python logging filter that truncates log messages to a specific number of characters before processing, use the following code:
class TruncationLoggerFilter(logging.Filter):
def __init__(self):
super(TruncationLoggerFilter, self).__init__()
def filter(self, record):
record.msg = record.msg[:32700]
print(record.msg)
return True
logger = logging.getLogger("logzio")
logger.addFilter(TruncationLoggerFilter())
The default limit is 32,700, but you can adjust this value as required.
This integration uses the OpenTelemetry logging exporter to send logs to Logz.io via the OpenTelemetry Protocol (OTLP) listener.
Prerequisites
- Python 3.7 or newer
- pip (Python package installer)
- A Python application
- An active account with Logz.io
If you need an example aplication to test this integration, please refer to our Python OpenTelemetry repository.
Install OpenTelemetry dependencies:
pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp
Update the Flask Application to Include OpenTelemetry:
```python
import logging
from opentelemetry._logs import set_logger_provider
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk._logs import LoggerProvider, LoggingHandler
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
# Configuration
service_name = "YOUR-SERVICE-NAME"
logzio_endpoint = "https://otlp-listener.logz.io/v1/logs" # Update this to match your region if needed
logzio_token = "<<LOG-SHIPPING-TOKEN>>"
# Set up OpenTelemetry resources
resource = Resource.create({"service.name": service_name})
# Set up Logger Provider and OTLP Log Exporter (HTTP/JSON)
logger_provider = LoggerProvider(resource=resource)
set_logger_provider(logger_provider)
log_exporter = OTLPLogExporter(
endpoint=logzio_endpoint,
headers={
"Authorization": f"Bearer {logzio_token}",
"user-agent": "logzio-python-logs-otlp"
}
)
logger_provider.add_log_record_processor(BatchLogRecordProcessor(log_exporter))
# Set up a specific logger for the application
logger = logging.getLogger("app")
logger.setLevel(logging.INFO)
# Attach OTLP handler to the specific logger
otlp_handler = LoggingHandler(logger_provider=logger_provider)
logger.addHandler(otlp_handler)
# Example usage of the logger
if __name__ == "__main__":
logger.info("Log message sent to Logz.io")
```
Replace `YOUR-SERVICE-NAME` with the required service name.
Your Logz.io log shipping token directs the data securely to your Logz.io Log Management account. The default token is auto-populated in the examples when you're logged into the Logz.io app as an **Admin**. [Manage your tokens](https://app.logz.io/#/dashboard/settings/manage-tokens/data-shipping).
Update the `listener.logz.io` part in `https://otlp-listener.logz.io/v1/logs` with the URL for [your hosting region](https://docs.logz.io/docs/user-guide/admin/hosting-regions/account-region).
Run your application.
python app.py
Check Logz.io for your logs
Allow some time for data ingestion, then open Open Search Dashboards.
Encounter an issue? See our log shipping troubleshooting guide.
Metrics
Send custom metrics to Logz.io from your Python application. This example uses OpenTelemetry Python SDK and the OpenTelemetry remote write exporter.
- Setup in code
- Setup Metrics using Lambda
- Setup Metrics with prometheus_client Library
Code configuration setup
1. Install the snappy c-library
DEB: sudo apt-get install libsnappy-dev
RPM: sudo yum install libsnappy-devel
OSX/Brew: brew install snappy
Windows: pip install python_snappy-0.5-cp36-cp36m-win_amd64.whl
2. Install the exporter and opentelemtry sdk
pip install opentelemetry-exporter-prometheus-remote-write
3. Add instruments to your application
Replace the placeholders in the exporter
section to match your specifics.
Parameter | Description |
---|---|
LISTENER-HOST | The Logz.io Listener URL for your region, configured to use port 8052 for http traffic, or port 8053 for https traffic. Replace <<LISTENER-HOST>> with the host for your region. The required port depends whether HTTP or HTTPS is used: HTTP = 8070, HTTPS = 8071. and add http/https protocol (https://listener.logz.io:8053). |
PROMETHEUS-METRICS-SHIPPING-TOKEN | Your Logz.io Prometheus Metrics account token. Replace <<PROMETHEUS-METRICS-SHIPPING-TOKEN>> with a token for the Metrics account you want to ship to. Look up your Metrics token. |
from time import sleep
from typing import Iterable
from opentelemetry.exporter.prometheus_remote_write import (
PrometheusRemoteWriteMetricsExporter,
)
from opentelemetry.metrics import (
CallbackOptions,
Observation,
get_meter_provider,
set_meter_provider,
)
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
# configure the Logz.io listener endpoint and Prometheus metrics account token
exporter = PrometheusRemoteWriteMetricsExporter(
endpoint="https://<<LISTENER-HOST>>:8053",
headers={
"Authorization": "Bearer <<PROMETHEUS-METRICS-SHIPPING-TOKEN>>",
},
)
reader = PeriodicExportingMetricReader(exporter)
provider = MeterProvider(metric_readers=[reader])
set_meter_provider(provider)
def observable_counter_func(options: CallbackOptions) -> Iterable[Observation]:
yield Observation(1, {})
def observable_up_down_counter_func(
options: CallbackOptions,
) -> Iterable[Observation]:
yield Observation(-10, {})
def observable_gauge_func(options: CallbackOptions) -> Iterable[Observation]:
yield Observation(9, {})
meter = get_meter_provider().get_meter("getting-started", "0.1.2")
# Counter
counter = meter.create_counter("counter")
counter.add(1)
# Async Counter
observable_counter = meter.create_observable_counter(
"observable_counter",
[observable_counter_func],
)
# UpDownCounter
updown_counter = meter.create_up_down_counter("updown_counter")
updown_counter.add(1)
updown_counter.add(-5)
# Async UpDownCounter
observable_updown_counter = meter.create_observable_up_down_counter(
"observable_updown_counter", [observable_up_down_counter_func]
)
# Histogram
histogram = meter.create_histogram("histogram")
histogram.record(99.9)
# Async Gauge
gauge = meter.create_observable_gauge("gauge", [observable_gauge_func])
sleep(6)
Types of metric instruments
See OpenTelemetry documentation for more details.
Name | Behavior | Default aggregation |
---|---|---|
Counter | Metric value can only go up or be reset to 0, calculated per counter.add(value,labels) request. | Sum |
UpDownCounter | Metric value can arbitrarily increment or decrement, calculated per updowncounter.add(value,labels) request. | Sum |
ValueRecorder | Metric values captured by the valuerecorder.record(value) function, calculated per request. | TBD |
SumObserver | Metric value can only go up or be reset to 0, calculated per push interval. | Sum |
UpDownSumObserver | Metric value can arbitrarily increment or decrement, calculated per push interval. | Sum |
ValueObserver | Metric values captured by the valuerecorder.observe(value) function, calculated per push interval. | LastValue |
Counter
# create a counter instrument
counter = meter.create_counter(
name="MyCounter",
description="Description of MyCounter",
unit="1",
value_type=int
)
# add labels
labels = {
"dimension": "value"
}
# provide the first data point
counter.add(25, labels)
UpDownCounter
# create an updowncounter instrument
requests_active = meter.create_updowncounter(
name="requests_active",
description="number of active requests",
unit="1",
value_type=int,
)
# add labels
labels = {
"dimension": "value"
}
# provide the first data point
requests_active.add(-2, labels)
ValueRecorder
# create a valuerecorder instrument
requests_size = meter.create_valuerecorder(
name="requests_size",
description="size of requests",
unit="1",
value_type=int,
)
# add labels
labels = {
"dimension": "value"
}
# provide the first data point
requests_size.record(85, labels)
SumObserver
import psutil
# Callback to gather RAM usage
def get_ram_usage_callback(observer):
ram_percent = psutil.virtual_memory().percent
# add labels
labels = {
"dimension": "value"
}
observer.observe(ram_percent, labels)
# create a sumobserver instrument
meter.register_sumobserver(
callback=get_ram_usage_callback,
name="ram_usage",
description="ram usage",
unit="1",
value_type=float,
)
UpDownSumObserver
# Callback to gather RAM usage
def get_ram_usage_callback(observer):
ram_percent = psutil.virtual_memory().percent
# add labels
labels = {
"dimension": "value"
}
observer.observe(ram_percent, labels)
# create an updownsumobserver instrument
meter.register_updownsumobserver(
callback=get_ram_usage_callback,
name="ram_usage",
description="ram usage",
unit="1",
value_type=float,
)
ValueObserver
import psutil
def get_cpu_usage_callback(observer):
for (number, percent) in enumerate(psutil.cpu_percent(percpu=True)):
labels = {"cpu_number": str(number)}
observer.observe(percent, labels)
# create a valueobserver instrument
meter.register_valueobserver(
callback=get_cpu_usage_callback,
name="cpu_percent",
description="per-cpu usage",
unit="1",
value_type=float,
)
5. Check Logz.io for your metrics
Allow some time for your data to transfer. Then log in to your Logz.io Metrics account and open the Metrics dashboard.
Setup Metrics using Lambda
This integration uses the OpenTelemetry collector extension and Python metrics SDK to create and send metrics from your Lambda functions to your Logz.io account.
This integration is currently supported in the following AWS regions: us-east-1, us-east-2,us-west-1, us-west-2, ca-central-1, ap-northeast-2, ap-northeast-1,eu-central-1, eu-west-2. Contact Logz.io Customer Support for other regions.
Create Lambda function
Create a new Lambda function in your AWS account (with Python version >= 3.8).
You can use our example deployment package by uploading the .zip file to the code source section inside your newly created Lambda function.
Add OpenTelemetry collector config variable
Add the OPENTELEMETRY_COLLECTOR_CONFIG_FILE
environment variable with a value of /var/task/collector.yaml
. This indicates the path to the configuration file.
Add OpenTelemetry config file
Add collector.yaml
at the root of your lambda function:
receivers:
otlp:
protocols:
grpc:
http:
exporters:
logging:
loglevel: info
prometheusremotewrite:
endpoint: "<<LISTENER-HOST>>:<PORT>>" # example: https://listener.logz.io:8053
resource_to_telemetry_conversion:
enabled: true # Convert resource attributes to metric labels
target_info:
enabled: false
headers:
Authorization: Bearer <<PROMETHEUS-METRICS-SHIPPING-TOKEN>>
service:
pipelines:
metrics:
receivers: [otlp]
exporters: [logging,prometheusremotewrite]
Replace the placeholders to match your data:
Environment variable | Description |
---|---|
<<LISTENER-HOST>> | The Logz.io Listener URL for your region, configured to use port 8052 for http traffic, or port 8053 for https traffic. |
<<PORT>> | The Logz.io listener port. 8052 for HTTP traffic, or 8053 for HTTPS traffic. |
<<PROMETHEUS-METRICS-SHIPPING-TOKEN>> | Replace <<PROMETHEUS-METRICS-SHIPPING-TOKEN>> with a token for the Metrics account you want to ship to. Look up your Metrics token. |
Create Lambda function Python script
Create a lambda_function.py
file for your lambda handler:
import json
import os
from opentelemetry.sdk._metrics import MeterProvider
from opentelemetry.sdk._metrics.export import (
PeriodicExportingMetricReader,
)
from opentelemetry.exporter.otlp.proto.grpc._metric_exporter import (
OTLPMetricExporter,
)
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
def lambda_handler(event, context):
print("lets start sending metrics")
# Initialize otlp exporter, reader, meterProvier, meter
exporter = OTLPMetricExporter(insecure=True)
# Add service name and lambda function metadata
resource = Resource(attributes={
SERVICE_NAME: "logzio-lambda",
"function_name": os.environ["AWS_LAMBDA_FUNCTION_NAME"],
"aws_region": os.environ["AWS_REGION"],
})
reader = PeriodicExportingMetricReader(exporter)
provider = MeterProvider(resource=resource, metric_readers=[reader])
# set_meter_provider(provider)
meter = provider.get_meter("logzio", "0.1.2")
# create a counter metric and provide the first data point
counter = meter.create_counter("counter")
counter.add(5)
# add labels
labels = {
"env": "prod"
}
counter.add(25, labels)
# Flush all metrics and close meter provider
provider.force_flush()
provider.shutdown()
return {
'statusCode': 200,
'body': json.dumps('Finished sending metrics')
}
Add Logz.io OTEL Python layer
Add the logzio-otel-python-layer
lambda layer to your function:
arn:aws:lambda:<<YOUR-AWS-REGION>>:486140753397:layer:logzio-otel-python-layer:1
Replace <<YOUR-AWS-REGION>>
with your AWS resgion.
Run the Lambda function
Run the Lambda function to send metrics to your Logz.io account.
Viewing metrics in Logz.io
Give your metrics time to process, after which they'll be available in your Metrics dashboard.
Types of metric instruments
Refer to the OpenTelemetry documentation for more details.
Name | Behavior |
---|---|
Counter | Metric value can only go up or be reset to 0, calculated per counter.Add(context,value,labels) request. |
UpDownCounter | Metric value can arbitrarily increment or decrement, calculated per updowncounter.Add(context,value,labels) request. |
Histogram | Metric values captured by the histogram.Record(context,value,labels) function, calculated per request. |
Counter
# create a counter metric and provide the first data point
counter = meter.create_counter("counter")
# add labels
labels = {
"env": "prod"
}
counter.add(5,labels)
counter.add(25, labels)
UpDownCounter
# create an up down counter metric and provide the first data points
up_down_counter = meter.create_up_down_counter(
name="example_up_down_counter",
description="example_up_down_counter",
)
labels = {
"env": "prod"
}
up_down_counter.add(20,labels)
up_down_counter.add(-10,labels)
Setup Metrics using prometheus_client Library
1. Install Prometheus_client Library:
pip3 install Prometheus-client
2. Add the prometheus_client library to your application
In your Python script, use the prometheus_client library and expose the built-in metrics to the Prometheus HTTP server:
from prometheus_client import start_http_server
import time
def main():
# Start up the server to expose the metrics.
start_http_server(8000)
# Generate some requests.
while True:
time.sleep(1)
if __name__== '__main__':
main()
3. Add system metrics (if required)
For non-Linux OS, install the psutil library:
Instal the
psutil
library:psutil library - pip3 install psutil
Add the following script to your code:
from prometheus_client import start_http_server, Gauge
import time
import psutil
import os
import resource
# Create gauges
cpu_seconds_total = Gauge('python_process_cpu_seconds_total', 'Total user and system CPU time spent in seconds.')
virtual_memory_bytes = Gauge('python_process_virtual_memory_bytes', 'Virtual memory size in bytes.')
resident_memory_bytes = Gauge('python_process_resident_memory_bytes', 'Resident memory size in bytes.')
open_fds = Gauge('python_process_open_fds', 'Number of open file descriptors.')
max_fds = Gauge('python_process_max_fds', 'Maximum number of open file descriptors.')
total_memory = Gauge('python_process_total_memory_bytes', 'Total memory size in bytes.')
def collect_metrics():
while True:
p = psutil.Process(os.getpid())
# Collect metrics
cpu_seconds_total.set(p.cpu_times().user + p.cpu_times().system)
virtual_memory_bytes.set(p.memory_info().vms)
resident_memory_bytes.set(p.memory_info().rss)
open_fds.set(p.num_fds())
max_fds.set(resource.getrlimit(resource.RLIMIT_NOFILE)[1])
total_memory.set(psutil.virtual_memory().total)
time.sleep(1)
if __name__ == '__main__':
start_http_server(8000)
collect_metrics()
3. Check metrics locally
Go to localhost:8000
to see the metrics.
4. Download OpenTelemetry collector
If you already have OpenTelemetry, proceed to the next step.
Create a dedicated directory on your host and download the OpenTelemetry collector for your OS.
Create a configuration file config.yaml
with the following:
Receivers configuration
receivers:
prometheus:
config:
scrape_configs:
- job_name: otel-collector-python
scrape_interval: 5s
static_configs:
- targets: ['localhost:8000']
Exporters configuration
exporters:
logging:
prometheusremotewrite:
resource_to_telemetry_conversion:
enabled: true
endpoint: https://<<LISTENER-HOST>>:8053
headers:
Authorization: Bearer <<PROMETHEUS-METRICS-SHIPPING-TOKEN>>
Replace <<LISTENER-HOST>>
with the host for your region. The required port depends whether HTTP or HTTPS is used: HTTP = 8070, HTTPS = 8071.
Replace <<PROMETHEUS-METRICS-SHIPPING-TOKEN>>
with a token for the Metrics account you want to ship to. Look up your Metrics token.
Processors and Service configuration
processors:
resourcedetection/system:
detectors: ["system"]
system:
hostname_sources: ["os"]
service:
pipelines:
metrics:
receivers: [prometheus]
processors: [resourcedetection/system]
exporters: [prometheusremotewrite, logging]
5. Start the Collector
Run the following command:
<path/to>/otelcol-contrib --config ./config.yaml
- Replace
<path/to>
with the directory path where you downloaded the collector. Adjust the configuration file name if it is different.
Viewing metrics in Logz.io
Give your metrics time to process, after which they'll be available in your Metrics dashboard.
Traces
Deploy this integration to enable automatic instrumentation of your Python application using OpenTelemetry.
Architecture overview
This integration includes:
- Installing the OpenTelemetry Python instrumentation packages on your application host
- Installing the OpenTelemetry collector with Logz.io exporter
- Running your Python application in conjunction with the OpenTelemetry instrumentation
On deployment, the Python instrumentation automatically captures spans from your application and forwards them to the collector, which exports the data to your Logz.io account.
- Local Host
- Docker
- ECS
- Kuberenetes
- Lambda via OpenTelemetry
Local host Python application auto instrumentation
Requirements:
- A Python application without instrumentation
- An active Logz.io account
- Port
4317
available on your host system - A name defined for your tracing service
This integration uses OpenTelemetry Collector Contrib, not the OpenTelemetry Collector Core.
Install OpenTelemetry components for Python
pip3 install opentelemetry-distro
pip3 install opentelemetry-instrumentation
opentelemetry-bootstrap --action=install
pip3 install opentelemetry-exporter-otlp
Set environment variables
After installation, configure the exporter with this command:
export OTEL_TRACES_EXPORTER=otlp
export OTEL_RESOURCE_ATTRIBUTES="service.name=<<YOUR-SERVICE-NAME>>"
Download and configure OpenTelemetry collector
Create a directory on your Python application and download the relevant OpenTelemetry collector. Create a config.yaml
with the following parameters:
- Replace
<<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
receivers:
otlp:
protocols:
grpc:
endpoint: "0.0.0.0:4317"
http:
endpoint: "0.0.0.0:4318"
exporters:
logzio/traces:
account_token: "<<TRACING-SHIPPING-TOKEN>>"
region: "<<LOGZIO_ACCOUNT_REGION_CODE>>"
headers:
user-agent: logzio-opentelemetry-traces
processors:
batch:
tail_sampling:
policies:
[
{
name: policy-errors,
type: status_code,
status_code: {status_codes: [ERROR]}
},
{
name: policy-slow,
type: latency,
latency: {threshold_ms: 1000}
},
{
name: policy-random-ok,
type: probabilistic,
probabilistic: {sampling_percentage: 10}
}
]
extensions:
pprof:
endpoint: :1777
zpages:
endpoint: :55679
health_check:
service:
extensions: [health_check, pprof, zpages]
pipelines:
traces:
receivers: [otlp]
processors: [tail_sampling, batch]
exporters: [logzio/traces]
telemetry:
logs:
level: info
tail_sampling
defines which traces to sample after all spans in a request are completed. By default, it collects all traces with an error span, traces slower than 1000 ms, and 10% of all other traces.
Additional policy configurations can be added to the processor. For more details, refer to the OpenTelemetry Documentation.
The configurable parameters in the Logz.io default configuration are:
Parameter | Description | Default |
---|---|---|
threshold_ms | Threshold for the span latency - traces slower than this value will be included. | 1000 |
sampling_percentage | Percentage of traces to sample using the probabilistic policy. | 10 |
Start the collector
Run:
<path/to>/otelcontribcol_<VERSION-NAME> --config ./config.yaml
- Replace
<path/to>
with the collector's directory. - Replace
<VERSION-NAME>
with the version name, e.g.otelcontribcol_darwin_amd64
.
Run OpenTelemetry with your Python application
Run this code from the directory of your Python application script:
opentelemetry-instrument python3 <YOUR-APPLICATION-SCRIPT>.py
Replace <YOUR-APPLICATION-SCRIPT>
with your Python application script name.
Viewing Traces in Logz.io
Give your traces time to process, after which they'll be available in your Tracing dashboard.
Docker Python application auto instrumentation
Auto-instrument your Python application and run a containerized OpenTelemetry collector to send traces to Logz.io. Ensure both application and collector containers share the same network.
Requirements:
- A Python application without instrumentation
- An active Logz.io account
- Port
4317
available on your host system - A name defined for your tracing service
Install OpenTelemetry instrumentation components
pip3 install opentelemetry-distro
pip3 install opentelemetry-instrumentation
opentelemetry-bootstrap --action=install
pip3 install opentelemetry-exporter-otlp
Set environment variables
Configure the exporter by running:
export OTEL_TRACES_EXPORTER=otlp
export OTEL_RESOURCE_ATTRIBUTES="service.name=<<YOUR-SERVICE-NAME>>"
Replace <<YOUR-SERVICE-NAME>>
with your tracing service name.
Pull OpenTelemetry collector docker image
docker pull otel/opentelemetry-collector-contrib:0.111.0
Create a configuration file
Create a config.yaml
file with the following content:
receivers:
otlp:
protocols:
grpc:
endpoint: "0.0.0.0:4317"
http:
endpoint: "0.0.0.0:4318"
exporters:
logzio/traces:
account_token: "<<TRACING-SHIPPING-TOKEN>>"
region: "<<LOGZIO_ACCOUNT_REGION_CODE>>"
logging:
processors:
batch:
tail_sampling:
policies:
[
{
name: policy-errors,
type: status_code,
status_code: {status_codes: [ERROR]}
},
{
name: policy-slow,
type: latency,
latency: {threshold_ms: 1000}
},
{
name: policy-random-ok,
type: probabilistic,
probabilistic: {sampling_percentage: 10}
}
]
extensions:
pprof:
endpoint: :1777
zpages:
endpoint: :55679
health_check:
service:
extensions: [health_check, pprof, zpages]
pipelines:
traces:
receivers: [otlp]
processors: [tail_sampling, batch]
exporters: [logging, logzio/traces]
Replace <<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
tail_sampling
defines which traces to sample after all spans in a request are completed. By default, it collects all traces with an error span, traces slower than 1000 ms, and 10% of all other traces.
Additional policy configurations can be added to the processor. For more details, refer to the OpenTelemetry Documentation.
The configurable parameters in the Logz.io default configuration are:
Parameter | Description | Default |
---|---|---|
threshold_ms | Threshold for the span latency - traces slower than this value will be included. | 1000 |
sampling_percentage | Percentage of traces to sample using the probabilistic policy. | 10 |
If you already have an OpenTelemetry installation, add these parameters to your existing collector's configuration file:
- Under the
exporters
list
logzio/traces:
account_token: <<TRACING-SHIPPING-TOKEN>>
region: <<LOGZIO_ACCOUNT_REGION_CODE>>
- Under the
service
list:
extensions: [health_check, pprof, zpages]
pipelines:
traces:
receivers: [otlp]
processors: [tail_sampling, batch]
exporters: [logzio/traces]
Replace <<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
An example configuration file:
receivers:
otlp:
protocols:
grpc:
http:
exporters:
logzio/traces:
account_token: "<<TRACING-SHIPPING-TOKEN>>"
region: "<<LOGZIO_ACCOUNT_REGION_CODE>>"
processors:
batch:
tail_sampling:
policies:
[
{
name: policy-errors,
type: status_code,
status_code: {status_codes: [ERROR]}
},
{
name: policy-slow,
type: latency,
latency: {threshold_ms: 1000}
},
{
name: policy-random-ok,
type: probabilistic,
probabilistic: {sampling_percentage: 10}
}
]
extensions:
pprof:
endpoint: :1777
zpages:
endpoint: :55679
health_check:
service:
extensions: [health_check, pprof, zpages]
pipelines:
traces:
receivers: [otlp]
processors: [tail_sampling, batch]
exporters: [logzio/traces]
Replace <<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
tail_sampling
defines which traces to sample after all spans in a request are completed. By default, it collects all traces with an error span, traces slower than 1000 ms, and 10% of all other traces.
Additional policy configurations can be added to the processor. For more details, refer to the OpenTelemetry Documentation.
The configurable parameters in the Logz.io default configuration are:
Parameter | Description | Default |
---|---|---|
threshold_ms | Threshold for the span latency - traces slower than this value will be included. | 1000 |
sampling_percentage | Percentage of traces to sample using the probabilistic policy. | 10 |
Run the container
Mount config.yaml
as volume to the docker run
command and run it as follows.
Linux
docker run \
--network host \
-v <PATH-TO>/config.yaml:/etc/otelcol-contrib/config.yaml \
otel/opentelemetry-collector-contrib:0.111.0
Replace <PATH-TO>
to the path to the config.yaml
file on your system.
Windows
docker run \
-v <PATH-TO>/config.yaml:/etc/otelcol-contrib/config.yaml \
-p 55678-55680:55678-55680 \
-p 1777:1777 \
-p 9411:9411 \
-p 9943:9943 \
-p 6831:6831 \
-p 6832:6832 \
-p 14250:14250 \
-p 14268:14268 \
-p 4317:4317 \
-p 55681:55681 \
otel/opentelemetry-collector-contrib:0.111.0
Replace <<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
Run the OpenTelemetry instrumentation in conjunction with your Python application
When running the OTEL collector in a Docker container, your application should run in separate containers on the same host network. Ensure all containers share the same network. Using Docker Compose ensures that all containers, including the OTEL collector, share the same network configuration automatically.
Run this code from your Python application script directory:
opentelemetry-instrument python3 `<<YOUR-APPLICATION-SCRIPT>>`.py
Replace <<YOUR-APPLICATION-SCRIPT>>
with your Python application script name.
Viewing Traces in Logz.io
Give your traces time to process, after which they'll be available in your Tracing dashboard.
Python Application Setup for ECS Service with OpenTelemetry
This guide provides an overview of deploying your Python application on Amazon ECS, using OpenTelemetry to collect and send tracing data to Logz.io. It offers a step-by-step process for setting up OpenTelemetry instrumentation and deploying both the application and OpenTelemetry Collector sidecar in an ECS environment.
Prerequisites
Before you begin, ensure you have the following prerequisites in place:
- AWS CLI configured with access to your AWS account.
- Docker installed for building images.
- AWS IAM role with sufficient permissions to create and manage ECS resources.
- Amazon ECR repository for storing the Docker images.
- Python 3.x and pip installed locally for development and testing.
For a complete example, refer to this repo.
Architecture Overview
The deployment will involve two main components:
Python Application Container
A container running your Python application, instrumented with OpenTelemetry to capture traces.
OpenTelemetry Collector Sidecar
A sidecar container that receives telemetry data from the application, processes it, and exports it to Logz.io.
The architecture is structured as follows:
project-root/
├── python-app/ # Your Python application directory
│ ├── app.py # Python application entry point
│ ├── Dockerfile # Dockerfile to build Python application image
│ └── requirements.txt # Python dependencies, includes OpenTelemetry
├── ecs/
│ └── task-definition.json # ECS task definition file
└── otel-collector
├── collector-config.yaml # OpenTelemetry Collector configuration
└── Dockerfile # Dockerfile for the Collector
Steps to Deploy the Application
Project Structure Setup
Ensure your project structure follows the architecture outline. You should have a directory for your Python application and a separate directory for the OpenTelemetry Collector.
Set Up OpenTelemetry Instrumentation
Add OpenTelemetry instrumentation to your Python application by including the necessary OpenTelemetry packages and configuring the tracing setup. This can be done by installing the
opentelemetry-distro
andopentelemetry-instrumentation-flask
packages and using them to instrument your Flask app.
Install dependencies:
requirements.txt
flask
opentelemetry-distro
opentelemetry-exporter-otlp
opentelemetry-instrumentation-flask
The package opentelemetry-instrumentation-flask
handles the automatic instrumentation of Flask at runtime.
Dockerize Your Application
Create a Dockerfile to build a Docker image of your Python application. Below is the Dockerfile to get started:
Dockerfile
FROM python:3.8-slim
WORKDIR /app
COPY . .
RUN pip install --no-cache-dir -r requirements.txt
# Set environment variables for OpenTelemetry configuration
ENV OTEL_TRACES_SAMPLER=always_on
ENV OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4317"
ENV OTEL_RESOURCE_ATTRIBUTES="service.name=python-app"
EXPOSE 5000
CMD ["opentelemetry-instrument", "python", "app.py"]
Configure the OpenTelemetry Collector
The OpenTelemetry Collector receives traces from the application and exports them to Logz.io. Create a collector-config.yaml
file to define how the Collector should handle traces.
collector-config.yaml
receivers:
otlp:
protocols:
grpc:
endpoint: "0.0.0.0:4317"
http:
endpoint: "0.0.0.0:4318"
exporters:
logzio/traces:
account_token: "<<TRACING-SHIPPING-TOKEN>>"
region: "<<LOGZIO_ACCOUNT_REGION_CODE>>"
headers:
user-agent: logzio-opentelemetry-traces
processors:
batch:
tail_sampling:
policies:
[
{
name: policy-errors,
type: status_code,
status_code: {status_codes: [ERROR]}
},
{
name: policy-slow,
type: latency,
latency: {threshold_ms: 1000}
},
{
name: policy-random-ok,
type: probabilistic,
probabilistic: {sampling_percentage: 10}
}
]
extensions:
pprof:
endpoint: :1777
zpages:
endpoint: :55679
health_check:
service:
extensions: [health_check, pprof, zpages]
pipelines:
traces:
receivers: [otlp]
processors: [tail_sampling, batch]
exporters: [logzio/traces]
telemetry:
logs:
level: info
Build Docker Images
Build Docker images for both the Node.js application and the OpenTelemetry Collector:
# Build Node.js application image
cd python-app/
docker build --platform linux/amd64 -t your-python-app:latest .
# Build OpenTelemetry Collector image
cd ../otel-collector/
docker build --platform linux/amd64 -t otel-collector:latest .
Push Docker Images to Amazon ECR
Push both images to your Amazon ECR repository:
# Authenticate Docker to Amazon ECR
aws ecr get-login-password --region <aws-region> | docker login --username AWS --password-stdin <aws_account_id>.dkr.ecr.<region>.amazonaws.com
# Tag and push images
docker tag your-python-app:latest <aws_account_id>.dkr.ecr.<region>.amazonaws.com/your-python-app:latest
docker push <aws_account_id>.dkr.ecr.<region>.amazonaws.com/your-python-app:latest
docker tag otel-collector:latest <aws_account_id>.dkr.ecr.<region>.amazonaws.com/otel-collector:latest
docker push <aws_account_id>.dkr.ecr.<region>.amazonaws.com/otel-collector:latest
Log Group Creation:
Create log groups for your Python application and OpenTelemetry Collector in CloudWatch.
aws logs create-log-group --log-group-name /ecs/python-app
aws logs create-log-group --log-group-name /ecs/otel-collector
Define ECS Task
Create a task definition (task-definition.json) for ECS that defines both the Node.js application container and the OpenTelemetry Collector container.
task-definition.json
{
"family": "your-python-app-task",
"networkMode": "awsvpc",
"requiresCompatibilities": ["FARGATE"],
"cpu": "256",
"memory": "512",
"executionRoleArn": "arn:aws:iam::<aws_account_id>:role/ecsTaskExecutionRole",
"containerDefinitions": [
{
"name": "your-python-app",
"image": "<aws_account_id>.dkr.ecr.<region>.amazonaws.com/your-python-app:latest",
"cpu": 128,
"portMappings": [
{
"containerPort": 5000,
"protocol": "tcp"
}
],
"essential": true,
"environment": [],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/ecs/your-python-app",
"awslogs-region": "<aws-region>",
"awslogs-stream-prefix": "ecs"
}
}
},
{
"name": "otel-collector",
"image": "<aws_account_id>.dkr.ecr.<aws-region>.amazonaws.com/otel-collector:latest",
"cpu": 128,
"essential": false,
"command": ["--config=/etc/collector-config.yaml"],
"environment": [
{
"name": "LOGZIO_TRACING_TOKEN",
"value": "<logzio_tracing_token>"
},
{
"name": "LOGZIO_REGION",
"value": "<logzio_region>"
}
],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/ecs/otel-collector",
"awslogs-region": "<aws-region>",
"awslogs-stream-prefix": "ecs"
}
}
}
]
}
Deploy to ECS
Create an ECS Cluster: Create a cluster to deploy your containers:
aws ecs create-cluster --cluster-name your-app-cluster --region <aws-region>
Register the Task Definition:
aws ecs register-task-definition --cli-input-json file://ecs/task-definition.json
Create ECS Service: Deploy the task definition using a service:
aws ecs create-service \
--cluster your-app-cluster \
--service-name your-python-app-service \
--task-definition your-python-app-task \
--desired-count 1 \
--launch-type FARGATE \
--network-configuration "awsvpcConfiguration={subnets=[\"YOUR_SUBNET_ID\"],securityGroups=[\"YOUR_SECURITY_GROUP_ID\"],assignPublicIp=ENABLED}" \
--region <aws-region> \
Verify Application and Tracing
After deploying, run your application to generate activity that will create tracing data. Wait a few minutes, then check the Logz.io dashboard to confirm that traces are being sent correctly.
Kuberenetes Python application auto insturmentation
Use a Helm chart to ship traces to Logz.io via the OpenTelemetry collector. The Helm tool manages packages of preconfigured Kubernetes resources.
logzio-k8s-telemetry allows you to ship traces from your Kubernetes cluster to Logz.io with the OpenTelemetry collector.
This chart is a fork of the opentelemtry-collector Helm chart. The main repository for Logz.io helm charts is logzio-helm.
This integration uses OpenTelemetry Collector Contrib, not the OpenTelemetry Collector Core.
Standard configuration
1. Deploy the Helm chart
Add logzio-helm
repo as follows:
helm repo add logzio-helm https://logzio.github.io/logzio-helm
helm repo update
2. Run the Helm deployment code
helm install \
--set logzio-k8s-telemetry.secrets.LogzioRegion=<<LOGZIO_ACCOUNT_REGION_CODE>> \
--set logzio-k8s-telemetry.secrets.TracesToken=<<TRACING-SHIPPING-TOKEN>> \
logzio-monitoring logzio-helm/logzio-monitoring -n monitoring
Replace <<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
<<LOGZIO_ACCOUNT_REGION_CODE>>
- Your Logz.io account region code. Available regions.
3. Define the logzio-k8s-telemetry service DNS
Typically, the service name will be logzio-k8s-telemetry.default.svc.cluster.local
, where default
is the namespace where you deployed the helm chart and svc.cluster.name
is your cluster domain name. If you're unsude what your cluster domain name is, run the following command to find it:
kubectl run -it --image=k8s.gcr.io/e2e-test-images/jessie-dnsutils:1.3 --restart=Never shell -- \
sh -c 'nslookup kubernetes.default | grep Name | sed "s/Name:\skubernetes.default//"'
This command deploys a pod to extract your cluster domain name, which can be removed after.
4. Install general Python OpenTelemetry instrumentation components
pip3 install opentelemetry-distro
pip3 install opentelemetry-instrumentation
opentelemetry-bootstrap --action=install
pip3 install opentelemetry-exporter-otlp
5. Set environment variables
Configure the exporter by running the following command:
export OTEL_TRACES_EXPORTER=otlp
export OTEL_RESOURCE_ATTRIBUTES="service.name=<<YOUR-SERVICE-NAME>>"
Replace <<YOUR-SERVICE-NAME>>
with your tracing service name.
6. Viewing Traces in Logz.io
Give your traces time to process, after which they'll be available in your Tracing dashboard.
Customizing Helm chart parameters
You can update Helm chart parameters in three ways:
Specify parameters using the
--set key=value[,key=value]
argument tohelm install
.Edit the
values.yaml
.Override default values with your own
my_values.yaml
and apply it in thehelm install
command.
Optional parameters can be added as environment variables:
Parameter | Description | Default |
---|---|---|
secrets.SamplingLatency | Threshold for the span latency - all traces slower than the threshold value will be filtered in. | 500 |
secrets.SamplingProbability | Sampling percentage for the probabilistic policy. | 10 |
Example
You can run the logzio-k8s-telemetry chart with a custom configuration file that takes precedence over the values.yaml
of the chart by running the following:
helm install -f <PATH-TO>/my_values.yaml \
--set logzio-k8s-telemetry.secrets.TracesToken=<<TRACES-SHIPPING-TOKEN>> \
--set logzio-k8s-telemetry.secrets.LogzioRegion=<<LOGZIO_ACCOUNT_REGION_CODE>> \
--set metricsOrTraces=true \
logzio-monitoring logzio-helm/logzio-monitoring
Replace <PATH-TO>
with your custom values.yaml
file path.
Replace <<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
The collector will sample ALL traces that contain any span with an error with this example configuration.
baseCollectorConfig:
processors:
tail_sampling:
policies:
[
{
name: error-in-policy,
type: status_code,
status_code: {status_codes: [ERROR]}
},
{
name: slow-traces-policy,
type: latency,
latency: {threshold_ms: 400}
},
{
name: health-traces,
type: and,
and: {
and_sub_policy:
[
{
name: ping-operation,
type: string_attribute,
string_attribute: { key: http.url, values: [ /health ] }
},
{
name: main-service,
type: string_attribute,
string_attribute: { key: service.name, values: [ main-service ] }
},
{
name: probability-policy-1,
type: probabilistic,
probabilistic: {sampling_percentage: 1}
}
]
}
},
{
name: probability-policy,
type: probabilistic,
probabilistic: {sampling_percentage: 20}
}
]
Uninstalling the Chart
To uninstall the logzio-monitoring
deployment, run:
helm uninstall logzio-monitoring
Deploy this integration to auto-instrument your Python application running on AWS Lambda and send the traces to your Logz.io account. This is done by adding a dedicated layer for OpenTelemetry collector, a dedicated layer for Python auto-instrumentation and configuring environment variables of these layers. This integration will require no change to your application code.
This integration only works for the following AWS regions: us-east-1
, us-east-2
, us-west-1
, us-west-2
,
ap-south-1
, ap-northeast-3
, ap-northeast-2
, ap-southeast-1
, ap-southeast-2
, ap-northeast-1
,
eu-central-1
, eu-west-1
, eu-west-2
, eu-west-3
, eu-north-1
,
sa-east-1
,
ca-central-1
.
Before you begin, you'll need:
- AWS CLI
- Configured AWS credentials
- A Lambda function with a Python application that is not yet instrumented.
Using aws lambda update-function-configuration
with --layers
replaces all existing layers with the specified ARN(s). To add a new layer without removing existing ones, include all desired layer ARNs in the command, both new and previously attached.
Adding environmental variables using the AWS CLI commands below, will overwrite all existing variables for your Lambda function.
This integration uses OpenTelemetry Collector Contrib, not the OpenTelemetry Collector Core.
Instrumentation adds overhead. A 60-second timeout ensures reliable trace exports.
aws lambda update-function-configuration --function-name <<YOUR-LAMBDA_FUNCTION_NAME>> --timeout 60
Replace <<YOUR-LAMBDA_FUNCTION_NAME>>
with the name of the Lambda function you want to update.
Add the OpenTelemetry collector layer to your Lambda function
This layer contains the OpenTelemetry collector that will capture data from your application.
aws lambda update-function-configuration --function-name <<YOUR-LAMBDA_FUNCTION_NAME>> --layers arn:aws:lambda:<<YOUR-AWS-REGION>>:486140753397:layer:logzio-opentelemetry-collector-<<ARCHITECHTURE>>:<<VERSION>>
Replace <<YOUR-LAMBDA_FUNCTION_NAME>>
with the name of your Lambda function running the Python application.
Replace <<YOUR-AWS-REGION>>
with the code of your AWS regions, e.g. us-east-1
.
Replace <<ARCHITECTURE>>
with the target architecture for your Lambda function, either arm64
for ARM-based applications or amd64
(also known as x86_64) for traditional 64-bit Intel/AMD applications.
Replace <<VERSION>>
with the latest version of the layer. You can find the latest version number by visiting the Logz.io OpenTelemetry Lambda Releases page.
Create a configuration file for the OpenTelemetry collector
By default, the OpenTelemetry collector layer exports data to the Lambda console. To customize the collector configuration, you need to add a collector.yaml
to your function and specify its location via the OPENTELEMETRY_COLLECTOR_CONFIG_URI
environment variable.
The collector.yaml
file will have the following configuration:
receivers:
otlp:
protocols:
grpc:
endpoint: "0.0.0.0:4317"
http:
endpoint: "0.0.0.0:4318"
exporters:
logzio/traces:
account_token: "<<TRACING-SHIPPING-TOKEN>>"
region: "<<LOGZIO_ACCOUNT_REGION_CODE>>"
service:
pipelines:
traces:
receivers: [otlp]
exporters: [logzio/traces]
Replace <<TRACING-SHIPPING-TOKEN>>
with the token of the account you want to ship to.
Replace <<LOGZIO_ACCOUNT_REGION_CODE>>
with the applicable region code.
tail_sampling
defines which traces to sample after all spans in a request are completed. By default, it collects all traces with an error span, traces slower than 1000 ms, and 10% of all other traces.
Additional policy configurations can be added to the processor. For more details, refer to the OpenTelemetry Documentation.
The configurable parameters in the Logz.io default configuration are:
Parameter | Description | Default |
---|---|---|
threshold_ms | Threshold for the span latency - traces slower than this value will be included. | 1000 |
sampling_percentage | Percentage of traces to sample using the probabilistic policy. | 10 |
Direct the OpenTelemetry collector to the configuration file
Add OPENTELEMETRY_COLLECTOR_CONFIG_URI
variable to direct the OpenTelemetry collector to the configuration file:
aws lambda update-function-configuration --function-name <<YOUR-LAMBDA_FUNCTION_NAME>> --environment Variables={OPENTELEMETRY_COLLECTOR_CONFIG_URI=<<PATH_TO_YOUR_COLLECTOR.YAML>>}
Replace <<YOUR-LAMBDA_FUNCTION_NAME>>
with the name of your Lambda function running the Python application.
Replace <<PATH_TO_YOUR_COLLECTOR.YAML>>
with the actual path to your collector.yaml
file.
(If collector.yaml
is located in the root directory of your application, use the path /var/task/collector.yaml
.)
Activate tracing for your Lambda function
aws lambda update-function-configuration --function-name <<YOUR-LAMBDA_FUNCTION_NAME>> --tracing-config Mode=Active
Replace <<YOUR-LAMBDA_FUNCTION_NAME>>
with the name of your Lambda function running the Python application.
Add the OpenTelemetry Python wrapper layer to your Lambda function
The OpenTelemetry Python wrapper layer automatically instruments the Python application in your Lambda function.
Find the latest ARN for the OpenTelemetry Python wrapper layer on the OpenTelemetry Lambda GitHub Releases page under layer-python
.
aws lambda update-function-configuration --function-name <<YOUR-LAMBDA_FUNCTION_NAME>> --layers <LAYER_ARN>
Replace <<YOUR-LAMBDA_FUNCTION_NAME>>
with the name of your Lambda function running the Python application.
Replace <<LAYER_ARN>>
with the latest ARN from the GitHub releases page.
Replace <<YOUR-AWS-REGION>>
with the code of your AWS regions, e.g. us-east-1
.
Add environment variable for the wrapper
Add the AWS_LAMBDA_EXEC_WRAPPER
environment variable to point to the otel-instrument
executable:
aws lambda update-function-configuration --function-name <<YOUR-LAMBDA_FUNCTION_NAME>> --environment Variables={AWS_LAMBDA_EXEC_WRAPPER=/opt/otel-instrument}
Replace <<YOUR-LAMBDA_FUNCTION_NAME>>
with the name of your Lambda function running the Python application.